
All Your Boot Are Belong To Us
CanSecWest 2014

Intel Security

Yuriy Bulygin, Andrew Furtak, Oleksandr Bazhaniuk, John Loucaides

UEFI Secure Boot

UEFI Secure Boot

UEFI has largely replaced conventional BIOS for

PC platform firmware on new systems.

UEFI 2.3.1 specified a new security feature “Secure Boot”

intended to protect UEFI based systems from bootkits which

were affecting systems with legacy BIOS/OS boot.

When enabled, Secure Boot validates the integrity of the

operating system boot loader before transferring control to it.

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Signed

BIOS

Update

UEFI

OROM

UEFI

Boot Loader

bootx64.efi

bootmgfw.efi

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver UEFI

Secure

Boot

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders (e.g. winload.efi, winresume.efi)

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

bootx64.efi

bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

OS Kernel (+ ELAM on Windows)

UEFI

Secure

Boot

OS Driver OS Driver

OS

Secure

Boot

UEFI Secure Boot in Action

MITRE
First Issue

MITRE’s research fit nicely with research and
guidance we were already coordinating.

All of this guidance has been shared previously
with BIOS vendors and platform manufacturers.

This guidance resulted from analysis of the BIOS
implementations on specific systems. We did not
perform analysis on all systems.

Unprotected Secure Boot Enable/Disable

Control a.k.a. “Quest For Disabling Secure Boot”

Recommendations

Protect Secure Boot Enable/Disable Control

 Don’t store it in places writeable by malware (like

RUNTIME_ACCESS UEFI Variables)

 Use “SecureBootEnable” UEFI Variable defined in edk2

 Require user physical presence to change

CHIPSEC test for this

 chipsec_main.py –m tools.secureboot.te

Turn On/Off Secure Boot in BIOS Setup

Secure Boot Enable/Disable Control

SecureBootEnable UEFI Variable

 When turning ON/OFF Secure Boot, it should change

Hmm.. but there is no SecureBootEnable variable

 Where does the BIOS store Secure Boot Enable flag?

Should be NV  somewhere in SPI Flash..

 Just dump SPI flash with Secure Boot ON and OFF

 chipsec_util.py spi dump spi.bin

 Then compare two SPI flash images? Good luck with that ;)

Found! It really is in BIOS Setup  in ‘Setup’ UEFI Variable

 Secure Boot On Secure Boot Off

chipsec_util.py uefi nvram

chipsec_util.py decode

Secure Boot Enable/Disable in Setup

Demo

PE/TE Header Confusion

a.k.a. PETE

Recommendations

Don’t skip checks on EFI executables with TE header

 Don’t skip Secure Boot checks on EFI executables with TE

Header

 Beware of customizations to open source
DxeImageVerificationLib

Recap on Image Verification Handler

SecureBoot EFI variable doesn’t exist or equals to

SECURE_BOOT_MODE_DISABLE? EFI_SUCCESS

File is not valid PE/COFF image? EFI_ACCESS_DENIED

SecureBootEnable NV EFI variable doesn’t exist or

equals to SECURE_BOOT_DISABLE? EFI_SUCCESS

SetupMode NV EFI variable doesn’t exist or equals to

SETUP_MODE? EFI_SUCCESS

EFI Executables

 Any EFI executables other then PE/COFF?

 YES! – EFI Byte Code (EBC), Terse Executable (TE)

 But EBC image is a 32 bits PE/COFF image wrapping byte
code. No luck 

 Terse Executable format:

 In an effort to reduce image size, a new executable image header (TE)

was created that includes only those fields from the PE/COFF headers
required for execution under the PI Architecture. Since this header

contains the information required for execution of the image, it can

replace the PE/COFF headers from the original image.

 http://wiki.phoenix.com/wiki/index.php/Terse_Executable_Format

http://wiki.phoenix.com/wiki/index.php/Terse_Executable_Format

TE is not PE/COFF

 TE differs from PE/COFF only with header:

PE/TE Header Handling by the BIOS

 Decoded UEFI BIOS image from SPI Flash

PE/TE Header Handling by the BIOS

CORE_DXE.efi:

PE/TE Header Confusion

 ExecuteSecurityHandler calls GetFileBuffer to

read an executable file.

 GetFileBuffer reads the file and checks it to have a valid

PE header. It returns EFI_LOAD_ERROR if executable is not

PE/COFF.

 ExecuteSecurityHandler returns EFI_SUCCESS (0)

in case GetFileBuffer returns an error

 Signature Checks are Skipped!

PE/TE Header Confusion

BIOS allows running TE images without signature

check

 Malicious PE/COFF EFI executable (bootkit.efi)

 Convert executable to TE format by replacing PE/COFF header

with TE header

 Replace OS boot loaders with resulting TE EFI executable

 Signature check is skipped for TE EFI executable

 Executable will load and patch original OS boot loader

Demo

Abusing Compatibility Support Module (CSM)

a.k.a. “Legacy Strikes Back”

Recommendations

CSM ^ Secure Boot

 Force CSM to Disabled if Secure Boot is Enabled

 But don’t do that only in Setup HII

 Implement isCSMEnabled() function always returning FALSE

when Secure Boot is enabled

Don’t Fall Back to Legacy Boot

 Don’t fall back to legacy boot through MBR if Secure Boot

verification of UEFI executable fails

CSM vs. Secure Boot

CSM Module Allows Legacy On UEFI Based Firmware

 Allows Legacy OS Boot Through [Unsigned] MBR

 Allows Loading Legacy [Unsigned] Option ROMs

 Once CSM is ON, UEFI firmware dispatches legacy OROMs then

boots MBR

CSM Cannot Be Turned On When Secure Boot is Enabled

 CSM can be turned On/Off in BIOS Setup Options

 But cannot select “CSM Enabled” when Secure Boot is On

Clearing of Secure Boot Keys & Restoring

Defaults

a.k.a. “No keys, no problem”

Recommendations

Protect Controls Clearing/Restoring Secure Boot Keys

 Don’t store them in places writeable by malware (like

RUNTIME_ACCESS UEFI Variables)

 Require physically present user to clear Secure Boot keys or

restore default values

Protect Default Values of Secure Boot Keys (PK, KEK..)

 Store default values in protected areas (e.g. embedded into

Firmware Volumes)

Clearing Platform Key… from Software

“Clear Secure Boot keys” takes effect after reboot

 Switch that triggers clearing of Secure Boot keys is in UEFI

Variable (happens to be in ‘Setup’ variable)

But recall our earlier presentation!

PK is cleared  Secure Boot is Disabled

https://media.blackhat.com/us-13/us-13-Bulygin-A-Tale-of-One-Software-Bypass-of-Windows-8-Secure-Boot-Slides.pdf

Install Default Keys… From Where?

Default Secure Boot keys can be restored [When there’s no PK]

Switch that triggers restore of Secure Boot keys to their

default values is in UEFI Variable (happens to be in ‘Setup’)

Nah.. Default keys are protected. They are in FV

But we just added 9 signatures to the DBX blacklist ;(

Waiting for Physical Presence

a.k.a. “Beep Beep Beep Boot”

Recommendations

Physical Presence is Important Protection

 Make sure there’s a platform specific mechanism to assert

physically present user (for example, a button on a device)

 Require physical presence to modify certain Secure Boot

configuration (On/Off switch, Custom Mode..)

Honest mistake, but entertaining…

The system protects Secure Boot configuration from unauthorized

modification

Stores and verifies “CRC” of Secure Boot settings

Upon “CRC” mismatch, beeps 3 times, waits timeout (a few

seconds) then…

Keeps booting with modified Secure Boot settings

Secure Boot is a complex protection relying on correct
implementation and configuration of multiple
components.

Both efforts enhance the transparency of firmware
security research and result in security assessment
tools.

We continue to actively research and coordinate issues
with platform manufacturers and BIOS vendors.

Summary

