All Your Boot Are Belong To Us

CanSecWest 2014

Intel Security

Yuriy Bulygin, Andrew Furtak, Oleksandr Bazhaniuk, John Loucaides

UEFI Secure Boot

UEFI Secure Boot

UEFI has largely replaced conventional BIOS for
PC platform firmware on new systems.

UEFI 2.3.1 specified a new security feature “Secure Boot"
iIntended to protect UEFI based systems from bootkits which
were affecting systems with legacy BIOS/0S boot.

When enabled, Secure Boot validates the integrity of the
operating system boot loader before transferring control to it.

UEFI UEFI DXE UEFI

. Secure
UEFI UEFI DXE bootx64.efi
Driver bootmgfw.efi Boot

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Hardware

OS
Secure
Boot

OS Driver OS Driver >
OS Kernel (+ ELAM on Windows)

UEFI OS Loaders (e.g. winload.efi, winresume.efi)

UEFI UEFI DXE UEFI |

. Secure
UEFI UEFI DXE bootx64.efi
Driver bootmgfw.efi Boot

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Hardware

UEFI Secure Boot in Action

Secure Boot Violation

Invalld signature detected. Check Secure
Boot Policy in Setup

MITRE's research fit nicely with research and
guidance we were already coordinating.

All of this guidance has been shared previously
with BIOS vendors and platform manufacturers.

This guidance resulted from analysis of the BIOS
implementations on specific systems. We did not
perform analysis on all systems.

ﬂ

Unprotected Secure Boot Enable/Disable
Control a.k.a. “Quest For Disabling Secure Boot"

Recommendations

Protect Secure Boot Enable/Disable Control

= Don't store it in places writeable by malware (like
RUNTIME_ACCESS UEFI Variables)

= Use “SecureBootEnable” UEFI VVariable defined in edk?2

= Require user physical presence to change

CHIPSEC test for this

chipsec main.py -m tools.secureboot. te

ﬂ

Turn On/Off Secure Boot in BIOS Setup
b a0z _Boot RN sove g Exit |

. Password Description

If DNLY the Administrator's password is set, this only
access to Setup and is only asked for when entering Setup.
If ONLY the User's password is set, this is a power on
password and must be entered to boot to enter Setup.

In Setup the User will have Administrator rights.

Administrator Password Status NOT INSTALLED
User Password Status NOT INSTALLED

User Passwoard

HDD Password Status : NOT INSTALLED
Set Master Password

Set User Password

> I/0 Interface Security

sSystem Mode state Setup
Secure Boorl state

Secure Boot Control

Secure Boot Enable/Disable Control

SecureBootEnable UEFI Variable
= When turning ON/OFF Secure Boot, it should change

Hmm.. but there is no SecureBootEnable variable
= \Where does the BIOS store Secure Boot Enable flag?

Should be NV =» somewhere in SPI Flash..
= Just dump SPI flash with Secure Boot ON and OFF

chipsec util.py spi dump spi.bin

= Then compare two SPI flash images? Good luck with that ;)

ﬂ

Secure Boot Enable/Disable in Setup

Found! It really is in BIOS Setup = in ‘Setup’ UEFI Variable

Secure Boot On Secure Boot Off

EFI Variable (offset = 0Ox4bb4): EFI Variable (offset = Ox4bb4):

Name : Setup Name : Setup

Guid : DODABCA3-670E-6F65~-6FD2~9945111ARB849 Guid : DODABCA3-670E~-6FE5~-6FD2~9945111AR849%
Attributes: 0x7 (NV+BS+RT) Attributes: 0x7 (NV+BS+RT)

Data: Data:

00 01 20 00 00 00 00 ©O2 00 00 01 00 00 01 00 021
00 00 00 01 01 00 00 00 00 01 00 00 00 00 00 00
04 01 01 01 00 00 OC 01 00 00 0O 01 00 00 00 01
8c 16 32 00 00 R 00 01 01 00 00 00 01 01 01 01
01 01 01 01 00 01 00 00 ©1 01 00 00 01 00 00 00
Q0 00 00 00 00 O01 01 01 01 01 0O 00 00 02 00 00
01 00 01 00 01 01 OO0 01 00 00 01 01 01 00 0D 01
00 00 01 01 01 01 01 01 01 01 04 04 04 04 04 04
04 04 00 00 00 00 00 00 00 00 00 0O QO 00 00 00
00 00 00 00 00 900 00 00 00 00 00 ©0 00 00 00 OO

00 01 20 00 00 00 00 02 00 00 01 00 00 O1 00 O1
00 00 00 01 01 00 00 00 00 01 00 00 00 00 00 00
04 01 01 01 00 00 00 01 00 00 00 01 00 00 00 01
2 8c 16 32 00 00 R oo 01 01 00 00 00 01 01 01 01

01 01 01 01 00 0i 00 00 01 01 00 00 01 00 00 00
00 00 00 00 00 01 01 01 01 01 00 00 00 02 00 00
01 00 01 00 01 01 00 01 00 00 01 01 01 00 00 01
00 00 01 01 01 01 01 01 01 01 04 04 04 04 04 04
04 04 00 00 00 00 00 00 00 00 00 00 GO 00 00 00
00 00 00 00 0O 00 00 00 00 00 00 00 00 00 0O 00

00 00 00 ££f ££ £f £f ££ ££ 01 00 00 00 00 00 00
00 00 00 01 01 01 01 01 02 02 01 00 01 01 00 01
04 00 00 0O 01 01 0O 0O 0O 00 O1 01 01 00 00 00
00 00 00 20 00 00 00 00 01 00 03 00 37 00 44 00
1c 19 00 2d 00 38 00 1c 10 01 41 00 51 00 1c 1a
0Z [s@ 00 0C 00 04 04 04 00

00 00 00 ££ ££ £f £f ££ ££ 01 00 00 00 00 00 0O
00 00 00 01 01 01 01 01 02 02 01 00 01 01 0O 01
04 00 00 0O 01 01 0O 0O 0O 00 01 01 01 00 0O 00

7D 00 00 00 20 00 00 OO 00 01 00 03 00 37 00 44 00
- 8 B Q 1c 19 00 24 00 38 00 1c 10 01 41 00 31 00 1c la
02 m 00 00 00 04 04 04 00

chipsec_util.py uefi nvram
chipsec_util.py decode

PE/TE Header Confusion
a.k.a. PETE

Recommendations

Don't skip checks on EFI executables with TE header

= Don't skip Secure Boot checks on EFl executables with TE
Header

= Beware of customizations to open source
DxeImageVerificationLib

Recap on Image Verification Handler

SecureBoot EFI variable doesn’t exist or equals to
SECURE_BOOT_MODE_DISABLE? EFI_SUCCESS

File is not valid PE/COFF image? EFI_ACCESS_DENIED

SecureBootEnable NV EFI variable doesn’t exist or
equals to SECURE_BOOT _DISABLE? EFI_SUCCESS

SetupMode NV EFI variable doesn’t exist or equals to
SETUP_MODE? EFI_SUCCESS

ﬂ

EFI Executables

= Any EFI executables other then PE/COFF?
= YES! - EFI Byte Code (EBC), Terse Executable (TE)

= But EBC image is a 32 bits PE/COFF image wrapping byte
code. No luck ®

= Terse Executable format:

In an effort to reduce image size, a new executable image header (TE)
was created that includes only those fields from the PE/COFF headers
required for execution under the Pl Architecture. Since this header
contains the information required for execution of the image, it can
replace the PE/COFF headers from the original image.

http://wiki.phoenix.com/wiki/index.php/Terse Executable Format

ﬂ

http://wiki.phoenix.com/wiki/index.php/Terse_Executable_Format

TE is not PE/COFF

= TE differs from PE/COFF only with header:

} EFI_TE_IMAGE_HEADER;

= EFI_TE_IMAGE HEADER SIGNATURE

PE/TE Header Handling by the BIOS

= Decoded UEFI BIOS image from SPI Flash

C:swchipsecrchipsec_util.py decode spi_flash.bhin nvar

[+] imported common configuration: chipsec.cfg.common

[CHIPSEC] Executing command ‘decode’ with args ['spi_flash.hin'. ‘nvar’']
[CHIPSEC] Decoding SPI ROM image from a file ‘spi_flash.bin’

[CHIPSEC] Found SPI Flash descriptor at offset BxB in the binary ‘spi_flash.hin’
[CHIPSEC] <{decode? time elapsed 18_883

C:wchipsec

{Chchipsec\spi_flash.bin.dir\l_200000-7FFFFF_BICH: P JCESTE-BA3D-4F1C-9935-896 232DD3.dir\5AE3F3T

[0+1]\...r\1_ 2 7FFFFF_BI0S.bin.dir\FV

n Name Size

.- Hp .

00 BCBCES578-8A3D-4F1C- : ; 2 }Folder| ||@@ S COMPRESSION
@1 _8C8CE573-8A3D-4F1C- ' 2}Folder

8-8A3D- 4F1E : 2}Folder||{01_S_FREEFORM_SUBTYPE_GUID

Name

.
3

@82_8C8CES7
)_8CSCES578-8A3D-4F1C-9935-896185C32}131072| [02_S_USER_INTERFACE

PE/TE Header Handling by the BIOS

CORE_DXE.efi:

cnp
mov
mov
movzx
lea
lea
cmovz
mov
mov
mow

call
mov
test

jz

byte ptr [r8], &4
eax, 1
[rsp+58h+var_28], rsi
edi, sil
r?, [rsp+58h+arg_18]
r8, [rsp+58h+arg_10]
edi, eax
rdx, rbx
[rsp+58h+var_38], rsi
cl, dil

- ?
GetFileBuffer
rcx, BBOOOBOAOBBOBAAAL
rcx, rax
short continue

continue:
nov r?, [rsp+58h+arg_18]
;________J nov r8, [rsp+58h+arg_18]
¥ Y A — nov rdx, rbx
[ﬂ Ml oK ecx, ecy
mou byte ptr [rsp+58h+var_38], dil
Exit: call SecurityHandler
add rsp, 46h nov rcx, [rsp+58h+arg_18]
pop rdi cmp rcx, Fsi
pop rsi nou rbx, rax
pop rbx jz short Exit_fet
retn
ExecuteSecurityHandler endp
BN

mnov rdx, cs:ipBS

BN

mou
call
test

jz

chkImage:

rex, [rdi]

IsUalidPe

al, al

short ret_EFI_LOAD_ERROR

I

BN

ret_EFI_LOAD_ERROR:

mou rax, B000000080000661h

BN

Exit:

add rsp, 506h
pop r13

pop rdi

pop rsi

pop rbp

pop rbx

retn

GetFileBuffer endp

IsUalidPe

Ualid:

HotValid:

proc near ; CODE XA
cmp word ptr [rcx], "ZH°
jnz short HotUalid
mou eax, [rcx+3Ch]
add rcx, rax
cmp dword ptr [rcx], "EP’
jnz short HotUalid
cmp word ptr [rcx+4], 288h
jz short Ualid
cmp word ptr [rcx+4], 8664h
jnz short HotUalid
; CODE XR
cmp word ptr [rcx+18h], 2BEh
jnz short MotUalid
mov eax, 1
retn
; CODE XR
; IsUalid
Xor eax, eax
retn
endp

IsUalidPe

PE/TE Header Confusion

» ExecuteSecurityHandler Calls GetFileBuffer to
read an executable file.

» GetFileBuffer reads the file and checks it to have a valid
PE header. [t returns EFI_LOAD ERROR if executable is not

PE/COFF.

" ExecuteSecurityHandler returns EFI_SUCCESS (0)
INn case GetFileBuffer returns an error

= Signature Checks are Skipped!

ﬂ

PE/TE Header Confusion

BIOS allows running TE images without signature
check

= Malicious PE/COFF EFI executable (bootkit.efi)

= Convert executable to TE format by replacing PE/COFF header
with TE header

= Replace OS boot loaders with resulting TE EFI executable
= Signature check is skipped for TE EFI executable
= Executable will load and patch original OS boot loader

ﬂ

Abusing Compatibility Support Module (CSM)
a.k.a. “Legacy Strikes Back”

Recommendations

CSM ~ Secure Boot
= Force CSM to Disabled if Secure Boot is Enabled
= But don't do that only in Setup Hill

= [mplement isCSMEnabled() function always returning FALSE
when Secure Boot is enabled

Don't Fall Back to Legacy Boot

= Don't fall back to legacy boot through MBR if Secure Boot
verification of UEFI executable fails

ﬂ

CSM vs. Secure Boot

CSM Module Allows Legacy On UEFI Based Firmware
= Allows Legacy OS Boot Through [Unsigned] MBR
= Allows Loading Legacy [Unsigned] Option ROMs

= Once CSM is ON, UEFI firmware dispatches legacy OROMs then
boots MBR

CSM Cannot Be Turned On When Secure Boot is Enabled
= CSM can be turned On/Off in BIOS Setup Options
= But cannot select “CSM Enabled” when Secure Boot is On

ﬂ

Clearing of Secure Boot Keys & Restoring
Defaults

a.k.a. “No keys, no problem”

ﬂ

Recommendations

Protect Controls Clearing/Restoring Secure Boot Keys

= Don't store them in places writeable by malware (like
RUNTIME_ACCESS UEFI Variables)

= Require physically present user to clear Secure Boot keys or
restore default values

Protect Default VValues of Secure Boot Keys (PK, KEK..)

= Store default values in protected areas (e.g. embedded into
Firmware Volumes)

ﬂ

Clearing Platform Key... from Software

“Clear Secure Boot keys” takes effect after reboot

=» Switch that triggers clearing of Secure Boot keys is in UEFI
\/ariable (happens to be in ‘Setup’ variable)

But recall our earlier presentation!
PK is cleared = Secure Boot is Disabled

ﬂ

https://media.blackhat.com/us-13/us-13-Bulygin-A-Tale-of-One-Software-Bypass-of-Windows-8-Secure-Boot-Slides.pdf

Install Default Keys... From Where?

Default Secure Boot keys can be restored [When there's no PK]

Switch that triggers restore of Secure Boot keys to their
default values is in UEFI Variable (happens to be in ‘Setup’)

Nah.. Default keys are protected. They are in FV
But we just added 9 signatures to the DBX blacklist ;(

ﬂ

Waiting for Physical Presence
a.k.a. “Beep Beep Beep Boot"

Recommendations

Physical Presence is Important Protection

= Make sure there's a platform specific mechanism to assert
physically present user (for example, a button on a device)

= Require physical presence to modify certain Secure Boot
configuration (On/Off switch, Custom Mode..)

Honest mistake, but entertaining...

The system protects Secure Boot configuration from unauthorized
modification
Stores and verifies “CRC" of Secure Boot settings
Upon “CRC" mismatch, beeps 3 times, waits timeout (a few
seconds) then...

0183: Bad CRC of Security Settings in EFI varl:
Configuration changed - Restart the system._

Keeps booting with modified Secure Boot settings

ﬂ

Summary

Secure Boot is a complex protection relying on correct
implementation and configuration of multiple
components.

Both efforts enhance the transparency of firmware
security research and result in security assessment
tools.

We continue to actively research and coordinate issues
with platform manufacturers and BIOS vendors.

ﬂ

