
Exploring Your System Deeper

[with CHIPSEC] is Not Naughty

Presenting: Oleksandr Bazhaniuk (@ABazhaniuk), Andrew Furtak

Mikhail Gorobets (@mikhailgorobets), Yuriy Bulygin (@c7zero)

Advanced Threat Research

Agenda

Intro to firmware security

Finding vulnerabilities in firmware

Checking hardware protections

Finding “problems” in firmware

Finding vulnerabilities in hypervisors

Conclusions

Intro to firmware security

Firmware Everywhere

4

Image source

FWFW

FW

FW

FW

FW

FW FW

FW

FW

http://www.tweaktown.com/reviews/7497/tyan-s7076-intel-c612-server-motherboard-review/index3.html

Firmware Everywhere

5

 GBe NIC, WiFi, Bluetooth, WiGig
 Baseband (3G, LTE) Modems
 Sensor Hubs
 NFC, GPS Controllers
 HDD/SSD
 Keyboard and Embedded Controllers
 Battery Gauge
 Baseboard Management Controllers (BMC)
 Graphics/Video
 USB Thumb Drives, keyboards/mice
 Chargers, adapters
 TPM, security coprocessors
 Routers, network appliances
 Main system firmware (BIOS, UEFI firmware, Coreboot)

Why Attack Firmware?

 Getting extreme persistence

 Getting stealth

 Bypassing OS or VMM based security

 Having unobstructed access to hardware

 OS independent

 Making the system unbootable

6

Some In-the-wild Firmware Attacks

 Mebromi BIOS rootkit

 EQUATION Group HDD firmware malware

] Hacking Team [UEFI rootkit

 Vault 7 Mac EFI implants (DerStarke/DarkMatter, Sonic Screwdriver)

http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
http://www.intelsecurity.com/advanced-threat-research/content/data/HT-UEFI-rootkit.html
https://wikileaks.org/ciav7p1/

CHIPSEC Framework

 Open Source Platform Security Assessment Framework

https://github.com/chipsec/chipsec

 OS support: Windows, Linux, UEFI Shell. Added alpha version for Mac OS

 Architecture support: x86, ARM (WIP experimental)

https://github.com/chipsec/chipsec

Finding Vulnerabilities in System Firmware

(BIOS, UEFI, Mac EFI, Coreboot)

Example: S3 Boot Script Vuln in PC UEFI and Mac EFI

[*] running module: chipsec.modules.common.uefi.s3bootscript

[x][===

[x][Module: S3 Resume Boot-Script Protections

[x][===

[!] Found 1 S3 boot-script(s) in EFI variables

[*] Checking S3 boot-script at 0x00000000DA88A018

[!] S3 boot-script is in unprotected memory (not in SMRAM)

[*] Reading S3 boot-script from memory..

[*] Decoding S3 boot-script opcodes..

[*] Checking entry-points of Dispatch opcodes..

...

[-] FAILED: S3 Boot Script and entry-points of Dispatch opcodes do not appear

to be protected

Technical Details of the S3 Resume Boot Script Vulnerabilities

http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf

Example: exploiting flash protections via S3 boot script vuln on Mac EFI

Technical Details of the S3 Resume Boot Script Vulnerabilities

http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf

Example: Mac EFI leaving SMM unlocked after S3

Issue. Loosing SMRAM protections after S3 sleep

Step 1. chipsec_main –m common.smrr

PASSED

Step 2. Go to sleep. Resume from sleep

Step 3. chipsec_main –m common.smrr

FAILED

Testing S3 Vulnerabilities

 Validate your system for S3 boot script vulnerabilities

chipsec_main –m common.uefi.s3bootscript

 Also run before and after resuming from sleep!

chipsec_main –m common.smrr

chipsec_main –m common.spi_lock

[or just run all modules] chipsec_main

 Manually test S3 boot script protections:

chipsec_main –m tools.uefi.s3script_modify

Decoding S3 Boot Script Opcodes…

chipsec_util uefi s3bootscript

[000] Entry at offset 0x0000 (length = 0x21):

Data:

02 00 0f 01 00 00 00 00 00 00 c0 fe 00 00 00 00

01 00 00 00 00 00 00 00 00

Decoded:

Opcode : S3_BOOTSCRIPT_MEM_WRITE (0x02)

Width : 0x00 (1 bytes)

Address: 0xFEC00000

Count : 0x1

Values : 0x00

..

[359] Entry at offset 0x2F2C (length = 0x20):

Data:

01 02 30 04 00 00 00 00 21 00 00 00 00 00 00 00

de ff ff ff 00 00 00 00

Decoded:

Opcode : S3_BOOTSCRIPT_IO_READ_WRITE (0x01)

Width : 0x02 (4 bytes)

Address: 0x00000430

Value : 0x00000021

Mask : 0xFFFFFFDE

Vulnerabilities in SMM of UEFI Firmware

Phys Memory

SMI Handlers in
SMRAM

OS MemoryRAX (code)

Fake SMM comm buffer

“UEFI” ACPI

EDKII

EDKI

Via ACPI table

Directly in registers

SMI

Exploit tricks SMI handler to write to an address in SMRAM (Attacking and Defending BIOS in 2015)

Comm Buffer

RBX (pointer)

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

Example: Attacking hypervisors via SMM pointers…

Phys Memory

SMI Handlers in
SMRAM

OS MemoryRAX (code)

Fake SMM comm buffer

VMM protected page

“UEFI” ACPI

EDKII

EDKI

Via ACPI table

Directly in registers

SMI

Comm Buffer

RBX (pointer)

Even though SMI handler check pointers for overlap with SMRAM, exploit can trick it to write to VMM

protected page (Attacking Hypervisors via Firmware and Hardware)

http://www.intelsecurity.com/advanced-threat-research/content/AttackingHypervisorsViaFirmware_bhusa15_dc23.pdf

Finding SMM “Pointer” vulnerabilities

[x][===

[x][Module: Testing SMI handlers for pointer validation vulnerabilities

[x][===

...

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000

[*] >>> Testing SMI handlers defined in 'smm_config.ini'..

...

[*] testing SMI# 0x1F (data: 0x00) SW SMI 0x1F

[*] writing 0x500 bytes at 0x00000000DAAC3000

> SMI 1F (data: 00)

RAX: 0x5A5A5A5A5A5A5A5A

RBX: 0x00000000DAAC3000

RCX: 0x0000000000000000

RDX: 0x5A5A5A5A5A5A5A5A

RSI: 0x5A5A5A5A5A5A5A5A

RDI: 0x5A5A5A5A5A5A5A5A

< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]

[!] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers

https://www.youtube.com/watch?v=z2Qf45nUeaA

https://www.youtube.com/watch?v=z2Qf45nUeaA

MMIO BAR Issues in Coreboot and UEFI

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

Firmware configures chipset and devices

through MMIO

SMI handlers communicate

with devices via MMIO registers

Example: MMIO BAR Issues in Coreboot and UEFI

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

SMI

Exploit with PCI access can modify BAR

register and relocate MMIO range

On SMI interrupt, SMI handler firmware

attempts to communicate with device(s)

It may read or write “registers” within

relocated MMIO

SPI Controller MMIO BAR (Access to SPI Flash)

chipsec_util uefi var-write B 55555555-4444-3333-2211-000000000000 B.bin

chipsec_util mmio dump SPIBAR

SPI Flash Data

(Variable contents)

SPI Status and Control

SPI Flash Address (address

variable is written to in flash)

Monitoring changes in

USB MMIO BAR

Testing for MMIO BAR issues

chipsec_main -i -m tools.smm.rogue_mmio_bar

Reallocating MMIO BAR to new location

Trigger SMIs and check new memory

location

Windows 10 Virtualization Based Security (VBS)

Example: Bypassing Windows 10 Virtual Secure Mode

Checking Hardware Protections

Example: Unprotected UEFI Firmware in Flash

Example: SMM Protections – Memory Sinkhole Vulnerability

chipsec_main -m tools.cpu.sinkhole

Attempting to overlap Local APIC page

with SMRR region

The Memory Sinkhole by Christopher Domas

https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation.pdf

Checking Memory Protections

sudo chipsec_main -m memconfig

Checking LOCK bits in PCIe config

registers

Integrated Graphics Aperture

Low MMIO Range

TOLUD

4GB

DRAM

Graphics Aperture

GTT MMIO

Access to

GFx Aperture

GFx Memory

Access to GFx Aperture

(MMIO) is redirected to

DRAM per GTT PTEs

GTT PTEs

Software DMA Access via IGD with CHIPSEC

chipsec_util igd

chipsec_util igd dmaread <address> [width] [file_name]

chipsec_util igd dmawrite <address> <width> <value|file_name>

 Cannot access certain memory ranges such as SMRAM

 A way for Graphics kernel driver to access Graphics Stolen data memory

 Separate graphics IOMMU/VT-d engine (controlled by GFXVTBAR)

References:

Intel Graphics for Linux – Hardware Specification – PRMs

chipsec_util igd

https://01.org/linuxgraphics/documentation/hardware-specification-prms

Finding “Problems” With the Firmware

Vault7 EFI DerStarke/DarkMatter Implant

 DerStarke includes DarkMatter Mac EFI firmware persistence implant with multiple

DXE and PEI executables

 Doesn't just rely on unlocked flash like HackingTeam's UEFI rootkit

 Re-infects EFI firmware updates with implants already in the firmware

 Contains DarkDream exploit which appears to bypass firmware protections on

resume from S3 sleep to permanently unlock SPI flash

 Using S3 resume in the exploit suggests exploitation of one of S3 boot script vulns

• Technical Details of the S3 Resume Boot Script Vulnerabilities

• Attacks On UEFI Security by Rafal Wojtczuk and Corey Kallenberg

• Reversing Prince Harming’s kiss of death by Pedro Vilaca

• Exploiting UEFI boot script vulnerability by Dmytro Oleksiuk

http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
https://bromiumlabs.files.wordpress.com/2015/01/attacksonuefi_slides.pdf
https://reverse.put.as/2015/07/01/reversing-prince-harmings-kiss-of-death/
http://blog.cr4.sh/2015/02/exploiting-uefi-boot-script-table.html

]HackingTeam[UEFI Rootkit

]HackingTeam[UEFI Rootkit

• rkloader is a DXE driver that is automatically executed during boot

• The module simply registers a callback on READY_TO_BOOT event to

execute the malicious payload

Analysis of the HackingTeam's UEFI Rootkit

http://www.intelsecurity.com/advanced-threat-research/ht_uefi_rootkit.html_7142015.html

 The callback then loads a UEFI application, which checks for infection by looking for UEFI

variable “fTA”

 Use NTFS module to drop a backdoor (scoute.exe) and RCS agent (soldier.exe) onto the

filesystem

]HackingTeam[UEFI Rootkit

Analysis of the HackingTeam's UEFI Rootkit

http://www.intelsecurity.com/advanced-threat-research/ht_uefi_rootkit.html_7142015.html

]HackingTeam[UEFI Rootkit

Infection

 Installed via physical access and a SPI programmer

 Or by booting a USB image to erase and reprogram firmware. Requires
unlocked (vulnerable) firmware on a target system

 Automatic reinfection after removal of remote access components

Detection

 Can be detected by finding fTA UEFI variable with GUID

8BE4DF61-93CA-11d2-aa0d-00e098302288

chipsec_util uefi var-find fTA

 Examine firmware image for additional DXE modules (see later)

• Installed by adding additional

sections to existing SMM driver

• Provides SMI interfaces for OS level

caller

• Direct SW SMI

• Periodic SMI with “magic” numbers in

registers to identify a call

• Provides read/write memory access.

Easily extensible

Building reliable SMM backdoor for UEFI based platforms

PoC SmmBackdoor by Dmytro Oleksiuk

http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html

Image Source: Anchorman

So you’ve got a system

with suspicious firmware?

http://img3.wikia.nocookie.net/__cb20101224032158/jackyman225/images/3/3f/Brick_yelling.jpg

Where to Start From? Firmware Acquisition

1. Obtain clean/original firmware image

1. Extract known good firmware image from a supposedly clean system (or from multiple

systems). For example, when purchased (beware of supply chain attack) or before travel

2. Firmware update image (UEFI “capsule” image) or full firmware image on the platform

manufacturer’s web-site

2. Get the firmware image from suspect system, periodically or when suspect (e.g. after travel)

 If you have an infector sample, make firmware dumps before and after the infection

3. Firmware cane be acquired with software (e.g. CHIPSEC) or hardware tools

 chipsec_util spi dump firmware.bin

 Important: software based acquisition methods of firmware images can be tampered with.

Whenever possible, use hardware tools to extract firmware

4. Compare the two images (see next slides for details)

 Check firmware security advisories to understand how the firmware could be compromised

and infected. This would help determining what to look for when comparing images

Detecting Unexpected Firmware Modifications

Check UEFI firmware image for unexpected modifications, e.g. added EFI executable binaries

chipsec_main -m tools.uefi.whitelist [-a check,<json>,<fw_image>]

Decodes UEFI firmware image and checks all EFI executable binaries

against a specified list

json JSON file with configuration of white-listed EFI executables

fw_image Full file path to UEFI firmware image. If not specified, the

module will dump firmware image directly from ROM

Generating Whitelist…

chipsec_main -n -m tools.uefi.whitelist -a generate,orig.json,fw.bin

Assumes there’s a way to generate clean (uninfected) list of EFI executables. For

example, from the update image downloaded from the vendor web-site

Checking (U)EFI Executables Against Whitelist…

chipsec_main –n –m tools.uefi.whitelist –a check,orig.json,fw.bin

Extra EFI executables belong to

HackingTeam’s UEFI rootkit

Verifying Mac EFI whitelist on Mac OS

Blacklisting Bad (U)EFI Executables

Check UEFI firmware image for known bad (vulnerable or malicious) EFI executable binaries

chipsec_main -i -m tools.uefi.blacklist [-a <fw_image>,<blacklist>]

Blacklist Example (in JSON format)

"HT_UEFI_Rootkit": {

"description": "HackingTeam UEFI Rootkit

(http://www.intelsecurity.com/advanced-threat-research/content/data/HT-UEFI-

rootkit.html)",

"match": {

"rkloader" : { "guid": "F50258A9-2F4D-4DA9-861E-BDA84D07A44C" },

"rkloader_name" : { "name": "rkloader" },

"Ntfs" : { "guid": "F50248A9-2F4D-4DE9-86AE-BDA84D07A41C" },

"app" : { "guid": "EAEA9AEC-C9C1-46E2-9D52-432AD25A9B0B" }

}

}

Checking Firmware for Blacklisted UEFI Executables

chipsec_main –n –m tools.uefi.blacklist –a fw.bin

Extracting EFI Executables from UEFI Binary

chipsec_util decode firmware.bin

EFI Firmware Volume

EFI File

Compressed Section

Internal Firmware Volume

Internal EFI File

Actual PE/COFF EFI Binary

Saving EFI Tree to JSON

Tools

Other great tools to extract and decode UEFI firmware images

1. UEFITool: GUI software by Nikolaj Schlej

2. uefi-firmware-parser by Teddy Reed

3. flashrom to extract firmware images from SPI flash

https://github.com/LongSoft/UEFITool
https://github.com/theopolis/uefi-firmware-parser
https://www.flashrom.org/Flashrom

Firmware Artifacts

To perform system firmware forensics, the following artifacts can be extracted
and analyzed:

1. Layout and entire contents of SPI Flash memory

2. BIOS/UEFI firmware including EFI binaries and NVRAM

3. Runtime or Boot UEFI Variables (non-volatile and volatile)

4. UEFI Secure Boot certificates (PK, KEK, db/dbx ..)

5. UEFI system and configuration tables (Runtime, Boot and DXE services)

6. UEFI S3 resume boot script table

7. PCIe option (expansion) ROMs

Firmware Artifacts

8. Settings stored in RTC-backed CMOS memory

9. ACPI tables

10.SMBIOS table

11.HW protection settings (e.g. SPI W/P)

12.System security settings (Secure Boot, etc.)

13.Contents of TPM Platform Configuration Registers (PCR)

14.Firmware images from other components such as HDD/SSD, NIC,
Embedded Controller, etc.

15.MBR/VBR or UEFI GUID Partition Table (GPT)

16.Files on EFI system partition (boot loaders)

Extracting EFI Configuration (from the image)

Firmware NVRAM configurations is extracted when UEFI firmware image is decoded

Alternatively, this command can be used:

chipsec_util uefi nvram nvar rom.dump.bin

Path to extracted/parsed NVRAM contents:

NVRAM dump: rom.dump.bin.dir\nvram_nvar.nvram.bin

Decoded variables: rom.dump.bin.dir\nvram_nvar.nvram.lst

Format of NVRAM and variables are platform/firmware specific.

CHIPSEC supports multiple types of NVRAM: EVSA, NVAR, VSS, VSS_AUTH, VSS_APPLE

Extracting EFI Configuration (on a live system)

chipsec_util uefi var-list

Secure Boot

certificates (PK,

KEK, db, dbx)

Setup Variable

BootOrder vars

AcpiGlobalVariable

Extracting UEFI Secure Boot keys…

chipsec_util uefi var-find PK / db / dbx / KEK

chipsec_util uefi keys db.bin / dbx.bin / kek.bin

Locating UEFI System Table & Runtime Services

chipsec_util uefi tables

Extracting CMOS Settings…

chipsec_util cmos dump

Locating ACPI Tables…

chipsec_util acpi list

Finding vulnerabilities in hypervisors

Fuzzing and exploring hypervisors…

Hypercall fuzzers:

tools.vmm.*.hypercallfuzz

Fuzzing modules for emulated devices:
tools.vmm.*_fuzz

I/O, MSR, PCIe device, MMIO overlap, more soon …

Tools to explore VMM hardware config
chipsec_util iommu (IOMMU)

chipsec_util vmm (CPU VM extensions)

Fuzzing Xen Hypercalls

[x][===

[x][Module: Xen Hypervisor Hypercall Fuzzer

[x][===

[CHIPSEC] Fuzzing HVM_OP (0x22) hypercall

[CHIPSEC]

[CHIPSEC] ********************* Hypercall status codes ********************

[CHIPSEC] Invalid argument - XEN_ERRNO_EINVAL : 578

[CHIPSEC] Function not implemented - XEN_ERRNO_ENOSYS : 170

[CHIPSEC] Status success - XEN_STATUS_SUCCESS : 114

[CHIPSEC] No such process - XEN_ERRNO_ESRCH : 89

[CHIPSEC] Operation not permitted - XEN_ERRNO_EPERM : 49

chipsec_main -i -m tools.vmm.xen.hypercallfuzz -a fuzzing,22,1000

• Some hypercalls tend to crash the guest too often

• Most tests fails on sanity checks

Example: Crashing Xen Host by Unprivileged Guest (XSA 188)

Finding CVE-2016-7154 by fuzzing Xen hypercalls:

chipsec_main -i -m tools.vmm.xen.hypercallfuzz -a fuzzing,20,1000000

Reproducing CVE-2016-7154:

(args_va, args_pa) = self.cs.mem.alloc_physical_mem(0x1000, 0xFFFFFFFFFFFFFFFF)

self.cs.mem.write_physical_mem(args_pa, 24, '\xFF' * 8 + '\x00' * 16)

self.vmm.hypercall64_five_args(EVENT_CHANNEL_OP, EVTCHOP_INIT_CONTROL, args_va)

self.vmm.hypercall64_five_args(EVENT_CHANNEL_OP, EVTCHOP_INIT_CONTROL, args_va)

Turns out when the PFN parameter is invalid, hypercall returns XEN_ERRNO_EINVAL

error, but doesn’t zero out internal pointer Use-After-Free

Fuzzing CPU Model Specific Registers…

chipsec_main –i –m tools.vmm.msr_fuzz

Low MSR range, High MSR range and

VMM synthetic MSR range

Issues in MSR Hypervisor Emulation

CVE-2015-0377

Writing arbitrary data to upper 32 bits of IA32_APIC_BASE MSR causes VMM and

host OS to crash on Oracle VirtualBox 3.2, 4.0.x-4.2.x

chipsec_main –m tools.vmm.vbox.vbox_crash_apicbase

XSA-108

A buggy or malicious HVM guest can crash the host or read data relating to other guests

or the hypervisor itself by reading MSR from range [0x100;0x3ff]. Discovered by Jan

Beulich

Fuzzing Hypervisor Emulation of I/O Ports…

chipsec_main –i –m tools.vmm.iofuzz

Fuzzer covers entire I/O port range

with 1000 writes to each port

Example: VENOM Vulnerability

VENOM vulnerability (discovered by CrowdStrike researchers)

chipsec_main –i –m tools.vmm.venom

Trigger Venom vulnerability by writing

to port 0x3F5 (FDC data) value 0x8E and

0x10000000 of random bytes

venom.crowdstrike.com

Example: Root to Hyper-V Exploit via SMM

Example: Dom0 to Xen Exploit via S3 Boot Script
Found S3 boot script table in

memory accessible to Dom0

Changing the boot script to

access Xen hypervisor pages

Dumping DomU VMCS from

memory protected by EPT

Extracting VMM Artifacts: VMCS, MSR, I/O Bitmaps…

Extracting VMM Artifacts: Extended Page Tables…

Conclusions

• Securing the firmware or detecting firmware compromise is a complex

problem

• Sophisticated adversaries start targeting firmware with implants

• Defenders need security research available to them to understand the

threat and protect their infrastructure

• Defenders also need tools to level the field with sophisticated adversaries

Thank You!

